ZMT

Many a little makes a mackle


Makefile学习手册

Makefile相关的学习


MakeFile学习参考手册 1

概述

什么是makefile?或许很多Windows的程序员都不知道这个东西,因为那些Windows的集成开发环境(integrated development environment,IDE)都为你做了这个工作,但我觉得要作一个好的和专业的程序员,makefile还是要懂。这就好像现在有这么多的HTML编辑器,但如果你想成为一个专业人士,你还是要了解HTML的标签的含义。特别在Unix下的软件编译,你就不能不自己写makefile了,会不会写makefile,从一个侧面说明了一个人是否具备完成大型工程的能力。

因为,makefile关系到了整个工程的编译规则。一个工程中的源文件不计其数,并且按类型、功能、模块分别放在若干个目录中,makefile定义了一系列的规则来指定,哪些文件需要先编译,哪些文件需要后编译,哪些文件需要重新编译,甚至于进行更复杂的功能操作,因为makefile就像一个Shell脚本一样,其中也可以执行操作系统的命令。

makefile带来的好处就是——“自动化编译”,一旦写好,只需要一个make命令,整个工程完全自动编译,极大的提高了软件开发的效率。 make是一个命令工具,是一个解释makefile中指令的命令工具,一般来说,大多数的IDE都有这个命令,比如:Delphi的make,Visual C++的nmake,Linux下GNU的make。可见,makefile都成为了一种在工程方面的编译方法。

现在讲述如何写makefile的文章比较少,这是我想写这篇文章的原因。当然,不同产商的make各不相同,也有不同的语法,但其本质都是在 “文件依赖性”上做文章,这里,我仅对GNU的make进行讲述,我的环境是RedHat Linux 8.0,make的版本是3.80。毕竟,这个make是应用最为广泛的,也是用得最多的。而且其还是最遵循于IEEE 1003.2-1992标准的(POSIX.2)。

在这篇文档中,将以C/C++的源码作为基础,所以必然涉及一些关于C/C++的编译的知识。关于这方面的内容,还请各位查看相关的编译器的文档。这里所默认的编译器是UNIX下的GCC和CC

关于程序的编译和链接 在此,我想多说关于程序编译的一些规范和方法。一般来说,无论是C还是C++,首先要把源文件编译成中间代码文件,在Windows下也就是 .obj 文件,UNIX下是 .o 文件,即Object File,这个动作叫做编译(compile)。然后再把大量的Object File合成可执行文件,这个动作叫作链接(link)。

编译时,编译器需要的是语法的正确,函数与变量的声明的正确。对于后者,通常是你需要告诉编译器头文件的所在位置(头文件中应该只是声明,而定义应该放在C/C++文件中),只要所有的语法正确,编译器就可以编译出中间目标文件。一般来说,每个源文件都应该对应于一个中间目标文件( .o 文件或 .obj 文件)。

链接时,主要是链接函数和全局变量。所以,我们可以使用这些中间目标文件( .o 文件或 .obj 文件)来链接我们的应用程序。链接器并不管函数所在的源文件,只管函数的中间目标文件(Object File),在大多数时候,由于源文件太多,编译生成的中间目标文件太多,而在链接时需要明显地指出中间目标文件名,这对于编译很不方便。所以,我们要给中间目标文件打个包,在Windows下这种包叫“库文件”(Library File),也就是 .lib 文件,在UNIX下,是Archive File,也就是 .a 文件。

总结一下,源文件首先会生成中间目标文件,再由中间目标文件生成可执行文件。在编译时,编译器只检测程序语法和函数、变量是否被声明。如果函数未被声明,编译器会给出一个警告,但可以生成Object File。而在链接程序时,链接器会在所有的Object File中找寻函数的实现,如果找不到,那到就会报链接错误码(Linker Error),在VC下,这种错误一般是: Link 2001错误 ,意思说是说,链接器未能找到函数的实现。你需要指定函数的Object File。

好,言归正传,gnu的make有许多的内容,闲言少叙。

makefile介绍

make命令执行时,需要一个makefile文件,以告诉make命令需要怎么样的去编译和链接程序。

首先,我们用一个示例来说明makefile的书写规则,以便给大家一个感性认识。这个示例来源于gnu 的make使用手册,在这个示例中,我们的工程有8个c文件,和3个头文件,我们要写一个makefile来告诉make命令如何编译和链接这几个文件。我们的规则是:

如果这个工程没有编译过,那么我们的所有c文件都要编译并被链接。

如果这个工程的某几个c文件被修改,那么我们只编译被修改的c文件,并链接目标程序。

如果这个工程的头文件被改变了,那么我们需要编译引用了这几个头文件的c文件,并链接目标程序。

只要我们的makefile写得够好,所有的这一切,我们只用一个make命令就可以完成,make命令会自动智能地根据当前的文件修改的情况来确定哪些文件需要重编译,从而自动编译所需要的文件和链接目标程序。

makefile规则

在讲述这个makefile之前,还是让我们先来粗略地看一看makefile的规则。

target ... : prerequisites ...
    recipe
    ...
    ...

target 可以是一个object file(目标文件),也可以是一个可执行文件,还可以是一个标签(label)。对于标签这种特性,在后续的“伪目标”章节中会有叙述。

prerequisites 生成该target所依赖的文件和/或target。

recipe 该target要执行的命令(任意的shell命令)。

这是一个文件的依赖关系,也就是说,target这一个或多个的目标文件依赖于prerequisites中的文件,其生成规则定义在command中。说白一点就是说:

prerequisites中如果有一个以上的文件比target文件要新的话,recipe所定义的命令就会被执行。 这就是makefile的规则,也就是makefile中最核心的内容。

说到底,makefile的东西就是这样一点,好像我的这篇文档也该结束了。呵呵。还不尽然,这是makefile 的主线和核心,但要写好一个makefile还不够,我会在后面一点一点地结合我的工作经验给你慢慢道来。内容还多着呢。:)

一个示例

正如前面所说,如果一个工程有3个头文件和8个C文件,为了完成前面所述的那三个规则,我们的makefile 应该是下面的这个样子的。

edit : main.o kbd.o command.o display.o \
        insert.o search.o files.o utils.o
    cc -o edit main.o kbd.o command.o display.o \
        insert.o search.o files.o utils.o

main.o : main.c defs.h
    cc -c main.c
kbd.o : kbd.c defs.h command.h
    cc -c kbd.c
command.o : command.c defs.h command.h
    cc -c command.c
display.o : display.c defs.h buffer.h
    cc -c display.c
insert.o : insert.c defs.h buffer.h
    cc -c insert.c
search.o : search.c defs.h buffer.h
    cc -c search.c
files.o : files.c defs.h buffer.h command.h
    cc -c files.c
utils.o : utils.c defs.h
    cc -c utils.c
clean :
    rm edit main.o kbd.o command.o display.o \
        insert.o search.o files.o utils.o

反斜杠( \ )是换行符的意思。这样比较便于makefile的阅读。我们可以把这个内容保存在名字为“makefile”或“Makefile”的文件中,然后在该目录下直接输入命令 make 就可以生成执行文件edit。如果要删除可执行文件和所有的中间目标文件,那么,只要简单地执行一下 make clean 就可以了。

在这个makefile中,目标文件(target)包含:可执行文件edit和中间目标文件( *.o ),依赖文件(prerequisites)就是冒号后面的那些 .c 文件和 .h 文件。每一个 .o 文件都有一组依赖文件,而这些 .o 文件又是可执行文件 edit 的依赖文件。依赖关系的实质就是说明了目标文件是由哪些文件生成的,换言之,目标文件是哪些文件更新的。

在定义好依赖关系后,后续的recipe行定义了如何生成目标文件的操作系统命令,一定要以一个 Tab 键作为开头。记住,make并不管命令是怎么工作的,他只管执行所定义的命令。make会比较targets文件和prerequisites文件的修改日期,如果prerequisites文件的日期要比targets文件的日期要新,或者target不存在的话,那么,make就会执行后续定义的命令。

这里要说明一点的是, clean 不是一个文件,它只不过是一个动作名字,有点像C语言中的label一样,其冒号后什么也没有,那么,make就不会自动去找它的依赖性,也就不会自动执行其后所定义的命令。要执行其后的命令,就要在make命令后明显得指出这个label的名字。这样的方法非常有用,我们可以在一个makefile中定义不用的编译或是和编译无关的命令,比如程序的打包,程序的备份,等等。

make是如何工作的

在默认的方式下,也就是我们只输入make 命令。那么,

  1. make会在当前目录下找名字叫“Makefile”或“makefile”的文件。

  2. 如果找到,它会找文件中的第一个目标文件(target),在上面的例子中,他会找到“edit”这个文件,并把这个文件作为最终的目标文件。

  3. 如果edit文件不存在,或是edit所依赖的后面的 .o 文件的文件修改时间要比 edit 这个文件新,那么,他就会执行后面所定义的命令来生成 edit 这个文件。

  4. 如果 edit 所依赖的 .o 文件也不存在,那么make会在当前文件中找目标为 .o 文件的依赖性,如果找到则再根据那一个规则生成 .o 文件。(这有点像一个堆栈的过程)

  5. 当然,你的C文件和头文件是存在的啦,于是make会生成 .o 文件,然后再用 .o 文件生成make的终极任务,也就是可执行文件edit了。

这就是整个make的依赖性,make会一层又一层地去找文件的依赖关系,直到最终编译出第一个目标文件。在找寻的过程中,如果出现错误,比如最后被依赖的文件找不到,那么make就会直接退出,并报错,而对于所定义的命令的错误,或是编译不成功,make根本不理。make只管文件的依赖性,即,如果在我找了依赖关系之后,冒号后面的文件还是不在,那么对不起,我就不工作啦。

通过上述分析,我们知道,像clean这种,没有被第一个目标文件直接或间接关联,那么它后面所定义的命令将不会被自动执行,不过,我们可以显示要make执行。即命令——make clean ,以此来清除所有的目标文件,以便重编译。

于是在我们编程中,如果这个工程已被编译过了,当我们修改了其中一个源文件,比如 file.c ,那么根据我们的依赖性,我们的目标 file.o 会被重编译(也就是在这个依性关系后面所定义的命令),于是 file.o 的文件也是最新的啦,于是 file.o 的文件修改时间要比edit要新,所以 edit 也会被重新链接了(详见 edit 目标文件后定义的命令)。

而如果我们改变了command.h ,那么, kdb.ocommand.ofiles.o 都会被重编译,并且,edit会被重链接。

makefile中使用变量

在上面的例子中,先让我们看看edit的规则:

edit : main.o kbd.o command.o display.o \
        insert.o search.o files.o utils.o
    cc -o edit main.o kbd.o command.o display.o \
        insert.o search.o files.o utils.o

我们可以看到 .o 文件的字符串被重复了两次,如果我们的工程需要加入一个新的.o文件,那么我们需要在两个地方加(应该是三个地方,还有一个地方在clean中)。当然,我们的makefile并不复杂,所以在两个地方加也不累,但如果makefile变得复杂,那么我们就有可能会忘掉一个需要加入的地方,而导致编译失败。所以,为了makefile的易维护,在makefile中我们可以使用变量。makefile的变量也就是一个字符串,理解成C语言中的宏可能会更好。

比如,我们声明一个变量,叫 objectsOBJECTSobjs OBJS obj 或是 OBJ ,反正不管什么啦,只要能够表示obj文件就行了。我们在makefile一开始就这样定义:

objects = main.o kbd.o command.o display.o \
     insert.o search.o files.o utils.o

于是,我们就可以很方便地在我们的makefile中以 $(objects) 的方式来使用这个变量了,于是我们的改良版makefile就变成下面这个样子:

objects = main.o kbd.o command.o display.o \
    insert.o search.o files.o utils.o

edit : $(objects)
    cc -o edit $(objects)
main.o : main.c defs.h
    cc -c main.c
kbd.o : kbd.c defs.h command.h
    cc -c kbd.c
command.o : command.c defs.h command.h
    cc -c command.c
display.o : display.c defs.h buffer.h
    cc -c display.c
insert.o : insert.c defs.h buffer.h
    cc -c insert.c
search.o : search.c defs.h buffer.h
    cc -c search.c
files.o : files.c defs.h buffer.h command.h
    cc -c files.c
utils.o : utils.c defs.h
    cc -c utils.c
clean :
    rm edit $(objects)

于是如果有新的 .o 文件加入,我们只需简单地修改一下 objects变量就可以了。

关于变量更多的话题,我会在后续给你一一道来。

让make自动推导

GNU的make很强大,它可以自动推导文件以及文件依赖关系后面的命令,于是我们就没必要去在每一个 .o 文件后都写上类似的命令,因为,我们的make会自动识别,并自己推导命令。

只要make看到一个 .o 文件,它就会自动的把 .c 文件加在依赖关系中,如果make找到一个 whatever.o ,那么 whatever.c 就会是 whatever.o 的依赖文件。并且 cc -c whatever.c 也会被推导出来,于是,我们的makefile再也不用写得这么复杂。我们的新makefile又出炉了。

objects = main.o kbd.o command.o display.o \
    insert.o search.o files.o utils.o

edit : $(objects)
    cc -o edit $(objects)

main.o : defs.h
kbd.o : defs.h command.h
command.o : defs.h command.h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search.o : defs.h buffer.h
files.o : defs.h buffer.h command.h
utils.o : defs.h

.PHONY : clean
clean :
    rm edit $(objects)

这种方法就是make的“隐式规则”。上面文件内容中, .PHONY 表示 clean 是个伪目标文件。

关于更为详细的“隐式规则”和“伪目标文件”,我会在后续给你一一道来。

makefile的另一种风格

清空目录的规则

Makefile里有什么

书写规则

规则举例

规则的语法

在规则中使用通配符

文件搜寻

伪目标

书写命令

每条规则中的命令和操作系统Shell的命令行是一致的。make会一按顺序一条一条的执行命令,每条命令的开头必须以 Tab 键开头,除非,命令是紧跟在依赖规则后面的分号后的。在命令行之间中的空格或是空行会被忽略,但是如果该空格或空行是以Tab键开头的,那么make会认为其是一个空命令。

我们在UNIX下可能会使用不同的Shell,但是make的命令默认是被/bin/sh ——UNIX的标准Shell 解释执行的。除非你特别指定一个其它的Shell。Makefile中, # 是注释符,很像C/C++中的 // ,其后的本行字符都被注释。

显示命令

通常,make会把其要执行的命令行在命令执行前输出到屏幕上。当我们用 @ 字符在命令行前,那么,这个命令将不被make显示出来,最具代表性的例子是,我们用这个功能来向屏幕显示一些信息。如:

@echo 正在编译XXX模块......

当make执行时,会输出“正在编译XXX模块……”字串,但不会输出命令,如果没有“@”,那么,make将输出:

echo 正在编译XXX模块......
正在编译XXX模块......

如果make执行时,带入make参数 -n 或 –just-print ,那么其只是显示命令,但不会执行命令,这个功能很有利于我们调试我们的Makefile,看看我们书写的命令是执行起来是什么样子的或是什么顺序的。

而make参数 -s--silent--quiet 则是全面禁止命令的显示。

命令执行

当依赖目标新于目标时,也就是当规则的目标需要被更新时,make会一条一条的执行其后的命令。需要注意的是,如果你要让上一条命令的结果应用在下一条命令时,你应该使用分号分隔这两条命令。比如你的第一条命令是cd命令,你希望第二条命令得在cd之后的基础上运行,那么你就不能把这两条命令写在两行上,而应该把这两条命令写在一行上,用分号分隔。如:

示例一:

exec:
    cd /home/hchen
    pwd

示例二:

exec:
    cd /home/hchen; pwd

当我们执行 make exec 时,第一个例子中的cd没有作用,pwd会打印出当前的Makefile目录,而第二个例子中,cd就起作用了,pwd会打印出“/home/hchen”。

make一般是使用环境变量SHELL中所定义的系统Shell来执行命令,默认情况下使用UNIX的标准Shell——/bin/sh来执行命令。但在MS-DOS下有点特殊,因为MS-DOS下没有SHELL环境变量,当然你也可以指定。如果你指定了UNIX风格的目录形式,首先,make会在SHELL所指定的路径中找寻命令解释器,如果找不到,其会在当前盘符中的当前目录中寻找,如果再找不到,其会在PATH环境变量中所定义的所有路径中寻找。MS-DOS中,如果你定义的命令解释器没有找到,其会给你的命令解释器加上诸如 .exe.com.bat.sh 等后缀。

命令出错

每当命令运行完后,make会检测每个命令的返回码,如果命令返回成功,那么make会执行下一条命令,当规则中所有的命令成功返回后,这个规则就算是成功完成了。如果一个规则中的某个命令出错了(命令退出码非零),那么make就会终止执行当前规则,这将有可能终止所有规则的执行。

有些时候,命令的出错并不表示就是错误的。例如mkdir命令,我们一定需要建立一个目录,如果目录不存在,那么mkdir就成功执行,万事大吉,如果目录存在,那么就出错了。我们之所以使用mkdir的意思就是一定要有这样的一个目录,于是我们就不希望mkdir出错而终止规则的运行。

为了做到这一点,忽略命令的出错,我们可以在Makefile的命令行前加一个减号 - (在Tab键之后),标记为不管命令出不出错都认为是成功的。如:

clean:
    -rm -f *.o

还有一个全局的办法是,给make加上 -i 或是 --ignore-errors 参数,那么,Makefile中所有命令都会忽略错误。而如果一个规则是以 .IGNORE 作为目标的,那么这个规则中的所有命令将会忽略错误。这些是不同级别的防止命令出错的方法,你可以根据你的不同喜欢设置。

还有一个要提一下的make的参数的是 -k 或是 --keep-going ,这个参数的意思是,如果某规则中的命令出错了,那么就终止该规则的执行,但继续执行其它规则。

嵌套执行make

在一些大的工程中,我们会把我们不同模块或是不同功能的源文件放在不同的目录中,我们可以在每个目录中都书写一个该目录的Makefile,这有利于让我们的Makefile变得更加地简洁,而不至于把所有的东西全部写在一个Makefile中,这样会很难维护我们的Makefile,这个技术对于我们模块编译和分段编译有着非常大的好处。

例如,我们有一个子目录叫subdir,这个目录下有个Makefile文件,来指明了这个目录下文件的编译规则。那么我们总控的Makefile可以这样书写:

subsystem:
    cd subdir && $(MAKE)

其等价于:

subsystem:
    $(MAKE) -C subdir

定义$(MAKE)宏变量的意思是,也许我们的make需要一些参数,所以定义成一个变量比较利于维护。这两个例子的意思都是先进入“subdir”目录,然后执行make命令。

我们把这个Makefile叫做“总控Makefile”,总控Makefile的变量可以传递到下级的Makefile中(如果你显示的声明),但是不会覆盖下层的Makefile中所定义的变量,除非指定了 -e 参数。

如果你要传递变量到下级Makefile中,那么你可以使用这样的声明:

export <variable ...>;

如果你不想让某些变量传递到下级Makefile中,那么你可以这样声明:

unexport <variable ...>;

如:

示例一:

export variable = value

其等价于:

variable = value
export variable

其等价于:

export variable := value

其等价于:

variable := value
export variable

示例二:

export variable += value

其等价于:

variable += value
export variable

如果你要传递所有的变量,那么,只要一个export就行了。后面什么也不用跟,表示传递所有的变量。

需要注意的是,有两个变量,一个是 SHELL ,一个是MAKEFLAGS,这两个变量不管你是否export,其总是要传递到下层 Makefile中,特别是 MAKEFLAGS 变量,其中包含了make的参数信息,如果我们执行“总控Makefile”时有make参数或是在上层 Makefile中定义了这个变量,那么 MAKEFLAGS 变量将会是这些参数,并会传递到下层Makefile中,这是一个系统级的环境变量。

但是make命令中的有几个参数并不往下传递,它们是 -C , -f , -h, -o 和 -W (有关Makefile参数的细节将在后面说明),如果你不想往下层传递参数,那么,你可以这样来:

subsystem:
    cd subdir && $(MAKE) MAKEFLAGS=

如果你定义了环境变量 MAKEFLAGS ,那么你得确信其中的选项是大家都会用到的,如果其中有 -t , -n 和 -q 参数,那么将会有让你意想不到的结果,或许会让你异常地恐慌。

还有一个在“嵌套执行”中比较有用的参数, -w 或是 –print-directory 会在make的过程中输出一些信息,让你看到目前的工作目录。比如,如果我们的下级make目录是“/home/hchen/gnu/make”,如果我们使用 make -w 来执行,那么当进入该目录时,我们会看到:

make: Entering directory `/home/hchen/gnu/make'.

而在完成下层make后离开目录时,我们会看到:

make: Leaving directory `/home/hchen/gnu/make'

当你使用 -C 参数来指定make下层Makefile时, -w 会被自动打开的。如果参数中有 -s ( –slient )或是 –no-print-directory ,那么, -w 总是失效的。

定义命令包

使用变量

使用条件判断

使用函数

make的运行

隐含规则

使用make更新函数库文件

后续


  1. how-to-write-makefile ↩︎